PARKA

Amr Alshatnawi

Alejandra Lopez

Karlee Barr

Daniel Carabez

Computer Science Department Saint Xavier University

Introduction

What is project PARKA?

- We are developing a software product that detects the number of empty and occupied spots in a parking lot.
- We're using a Raspberry Pi to run our code which is developed in Python.
- We built a physical model (landscape) to demonstrate how the product works.
- A prototype of a mobile application is being developed; this app will allow users to use the software product.

Why did we chose this Project?

Our team wanted to work on a project that will ultimately help solve an issue students, staff, and faculty face on campus. Developing a product that helps us find parking easily on campus is an idea that we believe is very beneficial.

Raspberry Pi

- Raspbian OS
- Used to Run the program
- VSCode
- WinSCP and Putty was used to gain remote access

Open CV

• Open Source library

• Real time computer vision

• Virtual environment to manage libraries and Packages used for the project.

How does the program work?

- Parking spot are defined manually
- All spots are stored in a list
- The list is saved in a file.

import cv2
Package to save parking space positions
import pickle
vid = cv2.VideoCapture(0)
rectangle measurments
width = 80
height = 130
with open('CarParking', 'rb') as f:
<pre>posList = pickle.load(f)</pre>
except:
posList = []
<pre>def click(events,x,y,flags,params):</pre>
if events == cv2.EVENT_LBUTTONDOWN:
<pre>posList.append((x, y))</pre>
if events == cv2.EVENT_RBUTTONDOWN:
for i, pos in enumerate(posList):
x1, y1 = pos
if $x1 < x < x1 + width and y1 < y < y1 + height:$
<pre>posList.pop(i)</pre>
with open('CarParking', 'wb') as f:
pickle.dump(posList, f)
while True:
Read image
<pre>ret, image = vid.read()</pre>
#rectangle to represent one parking space

How does the program work ?

create an LCD object and capture video from main camera lcd = LCD() vid = cv2.VideoCapture(0)

rectangle measurments
width = 60
height = 120

dunction to check parking space def checkspace(imagepro):

declare spaces to zero
availableSpace = 0

loop through the parking list

for pos in posList: x,y = pos imgcrop = imagepro[y:y+height, x:x+width]

count the nonZero pixels
count = cv2.countNonZero(imgcrop)

cvzone.putTextRect(image, str(count), (x,y+height-5), scale = 1, thickness=2, offset=0, colorR=(0,0,0))

if pixle is less than 500, then it's empty

if count < 500: color = (0,255,0) thickness = 2 availableSpace = availableSpace

else the spot in not empty

else: color = (0,0,255) thickness = 2 cv2.rectangle(image,pos,(pos[0] + width, pos[1] + height),color, thickness)

#print the number of available spaces on the LCD displa

cvzone.putTextRect(image, f'Available spaces: {availableSpace}/{len(posList)}', (0,30), scale = 2, thickness=2, offset=10, colorR=(0,0,0))
lcd.text('Available Spaces',1)
lcd.text(' + tr(availableSpace) + " out of " + str(len(posList)) + "", 2)

Tinkercad & Ender

- Tinkercad is a 3D modeling program
- Ender is a 3D printer

Revit

Revit is a software used to design and build architectural models

Webmaster Site Design

- Intended for desktop
- Simple design
- Collaborative effort

0	PARKA Webmaster Login	×
---	-----------------------	---

+

\sim	 Ο	X
	<u> </u>	~

NetID	
Enter NetID	
Password	
Enter Password	

Webmaster Site

- Secure login
- Access to camera feed
- Ability to run diagnostics tests and reset system
- Warning message before running tests/reset

PARKA

CAMERA 1

CAMERA 2

S PARKA Webmaster X	+	\sim	 ٥	×
← → C ① 127.0.0.1:26086/feed	l.html	e 4	-	:

PARKA

w Camera Feed Run Diagnostics/Reset System Logout

Select a camera: Camera 1 🗸

CAMERA 1

PROTOTYPE

Design Goals

- Easy to navigate
- Single-handed use
- Keep it simple
- Fun and clean design

Did Tuckman's Ladder apply?

Forming Storming Norming Performing

- What was it like to work in a team?
- What were your lessons learned?
- What were your takeaways?
- What was really difficult?
- What was easier than you thought it would be?

SXU-Software-Engineering

Dev Team 2

- Amr Alshatnawi
- Alejandra Lopez
- Daniel Carabez
- Karlee Barr

Project PARKA is a project that we are working on for our software engineering class at Saint Xavier University. We are developing a software product that detects the number of empty and occupied spots in a parking lot. We're using a Raspberry Pi to run our code which is developed in Python and we're also building a physical model (landscape) to demonstrate how the product works. A prototype of a mobile application is being developed; this app will allow users to use the software product.

DEMO

You ready?

